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Abstract

Combining the variational multiscale (VMS) method for large-eddy simulation with a dis-

continuous Galerkin (DG) spatial discretization leads to a synergistic approach to turbu-

lence simulation that we call the local variational multiscale (`VMS) method. In `VMS

the flexibility of DG enables the large and small-scale spaces to be set on each element

independently. In this paper, preliminary results using `VMS are presented for turbulent

channel flow that demonstrate the flexibility and efficacy of the method.
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1 Introduction

Continuing our study of discontinuous Galerkin (DG) methods for simulating tur-

bulent flows, the current paper builds upon several recent publications that docu-

ment our progress to date [4, 5, 7, 16]. The focus of this paper is to present pre-

liminary results for the combination of DG and the variational multiscale (VMS)

method for large eddy simulation (LES) [3, 9, 10] — a synergistic combination we

call the local variational multiscale (`VMS) method that is promising for LES in

complex geometries.

We begin with a brief discussion of the formulation and implementation of `VMS

for turbulence simulation. Although `VMS is particularly attractive for flows in

complex geometries [4, 5], as a first step, this paper presents `VMS results for

planar turbulent channel flow to demonstrate the validity of the approach. The pa-

per concludes with a summary of our findings and a discussion of future research

directions.

2 Formulation

Consider the compressible Navier–Stokes equations in strong form

U ,t + F i,i − F
v
i,i = S in Ω × (0, T ) (1a)

U(x, 0) = U 0(x) in Ω (1b)

where U = {ρ, ρu, ρe}T is the vector of conserved variables, ρ is the fluid density,

u is the fluid velocity vector, and e is the total energy per unit mass. The inviscid

and viscous flux vectors in the ith coordinate direction are F i(U ) and F
v
i (U),
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and S is a source term. Equation (1a) is solved subject to appropriate boundary

conditions that must be specified for each problem of interest; a state equation, such

as the ideal gas equation; and constitutive laws that define fluid properties such as

viscosity and thermal conductivity as functions of the conserved variables. Due to

space limitations, we do not explicitly define the flux vectors, state equation, or

constitutive relations, but instead refer the reader to standard texts (see, e.g., Hirsch

[8]).

The fixed spatial domain for the problem is denoted by Ω, which is an open, con-

nected, bounded subset of IR3, with boundary ∂Ω. Let Ph be a partition of the

domain Ω into N subdomains Ωe where

Ω̄ =
N⋃

e=1

Ω̄e and Ωe ∩ Ωf = ∅ for e 6= f . (2)

Starting from the strong form of the compressible Navier–Stokes equations (1a),

we consider a single subdomain, Ωe, multiply by a weighting function W that is

continuous in Ωe, and integrate the flux terms by parts

∫

Ωe

(
W

T
U ,t + W

T
,i(F

v
i − F i)

)
dx+

∫

∂Ωe

W
T (F n − F

v
n) ds =

∫

Ωe

W
T
S ds (3)

where F n = F ini. In discontinuous Galerkin, one allows the solution and weight-

ing functions to be discontinuous across element interfaces and the solutions on

each element are coupled using appropriate numerical fluxes for both inviscid F n(U) →

F̂ n(U−, U+) and viscous fluxes, F
v
i (U , U ,j) → F̂

v

i (U
−, U−

,j , U
+, U+

,j). Intro-

ducing numerical fluxes and summing over all elements yields

N∑

e=1

∫

Ωe

(
W

T
U ,t + W

T
,i(F

v
i − F i)

)
dx +

N∑

e=1

∫

∂Ωe

W
T

(
F̂ n(U−, U+)

)
ds−
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N∑

e=1

∫

∂Ωe

W
T

(
F̂

v

n(U−, U−

,j , U
+, U+

,j)
)

ds =
N∑

e=1

∫

Ωe

W
T
S ds (4)

where U
+ and U

− are the adjacent and local states, respectively. For an element

edge on the physical boundary ∂Ω, U
+ = U bc. Likewise, for inter-element bound-

aries, U
+ comes from the neighboring element. Thus, all interface and boundary

conditions are set through the numerical fluxes. We use the Lax–Friedrichs flux

for the inviscid numerical flux and the method of Bassi and Rebay [1] for the vis-

cous numerical flux. For a more thorough discussion of our approach, including

boundary conditions, the interested reader is referred to Ref. [16].

For large-eddy simulation, we utilize the variational multiscale (VMS) method in-

troduced by Hughes et al. [9] and recast in a form more consistent with traditional

turbulence modeling by Collis [3]. This method bypasses several of the limitations

of filter-based LES — such as filter-derivative commutation and filter design on

inhomogeneous grids — by using variational projection to effect scale separation,

thereby making extension to complex geometries easier.

The VMS methodology, involves a priori partitioning of the solution U = U +

Ũ + Û where U are the large scales, Ũ are the small scales, and Û are the unre-

solved scales [3]. Subsequently, equations for each scale range can be derived and

the influence of the unresolved scales (through Reynolds and cross stresses) on the

resolved scales can be isolated (see Collis [3] for details). Thereafter, a subgrid-

scale model confined to act just on the small scales, such as a constant coefficient

Smagorinsky model, is introduced to model the influence of the unresolved scales

on the resolved scales. This approach to modeling, where no explicit model is ap-

plied on the large scales, is responsible for the success of VMS, when using a

constant coefficient Smagorinsky model on the small scales, in both equilibrium

and non-equilibrium flows [10, 14, 17].
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The discontinuous Galerkin method permits the use of unstructured grids with

high-order, hierarchical representations used on each element that provides a con-

venient setting for VMS turbulence modeling. This makes the combination of DG

and VMS (i.e. `VMS) particularly attractive for turbulence simulations in complex

geometries and the reader is referred to Refs. [4, 15, 16] for more details regarding

`VMS.

3 Numerical Results

Consider fully-developed turbulent flow in a planar channel with streamwise x,

wall-normal y, and spanwise z directions. The flow is assumed to be periodic in

x and z where the box size is selected so that the turbulence is adequately de-

correlated.

In Ramakrishnan and Collis [16], DNS using DG discretizations highlighted the

capabilities of DG in terms of local hp-refinement and weak boundary-conditions

for efficiently simulating near-wall turbulence. The current paper, extends this work

to include VMS consisting of a Smagorinsky model [9] applied only to small scales.

As an initial demonstration of `VMS, simulations are presented at Reτ = 100 and

395 using a centerline Mach number of Mc = 0.3 so that comparisons can be made

to prior incompressible results (see e.g., Refs. [11, 13]). Following Coleman et al.

[2], we use a cold, isothermal wall so that internal energy created by molecular

dissipation is removed from the domain via heat transfer across the walls, allowing

a statistically steady state to be achieved. The bulk mass flow is held constant by

the addition of an x-momentum source on the right-hand side of (1a).

The computational parameters for each simulation are shown in Table 1 where Li
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and Ni denote the domain size and the number of elements in the ith direction,

respectively. The parameter p is the local polynomial order on each element which,

for simplicity is taken to be uniform for the simulations presented here (see [16]

for DNS using variable polynomial order elements). Typically, we use a stretched

wall-normal mesh with

yj =
tanh(cs(2j/Ny − 1))

tanh cs

+ 1 , j = 0, 1, . . . , Ny (5)

where cs is the stretching factor in the range 1.75 < cs < 2.0. Table 1 also lists the

element spacings in the streamwise and spanwise directions (∆x+ and ∆z+) as well

as the distance of the first collocation point from the wall, ∆y+
w , all in wall-units. In

all cases, we use third-order TVD-RK time advancement with ∆t = 0.0001. This

time step is a factor of 10 smaller than that typically used in our prior incompress-

ible simulations [6] because the incompressible code treats wall-normal viscous

terms implicitly. We are currently enhancing our DG code to support implicit time-

advancement.

We use a constant coefficient Smagorinsky variant of the VMS model applied to the

small-scales. The Smagorinsky coefficient is 0.1 and the length-scale in the eddy

viscosity is computed using

∆̄2 =
LxLz

NxNz(p + 1)2
(6)

which is designed to account both for element size as well as polynomial order.

For all cases presented here, the “large-scales” are represented by the first two-

polynomial modes on each element (i.e. the constant and linear modes). This choice

is made so that typical near-wall structures are well represented in the large-scale

space [17]. The remaining modes on each element are taken as the “small-scales”

where the small-small variant of the Smagorinsky model is applied [9]. To help

control aliasing errors in these high-order simulations, we use a Boyd-Vandeven
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spectral filter with a spectral shift of 4 (see Ref. [18]). We have also successfully

employed over-integration [12] to de-alias our solutions and these results will be

available in [15].

Mean and rms profiles for Reτ = 100 are shown in Fig. 1 using both a uniform

and stretched mesh in the wall-normal direction. Even on the uniform mesh with

the coarse near-wall resolution, ∆y+
w = 4.3, the results are in reasonable agreement

with DNS. The rms velocities clearly show the influence of the weak wall-boundary

conditions in the streamwise direction with noticeable slip near the wall. As first

presented in the context of DNS using DG [16], this is effectively a “boundary layer

capturing” method where the viscous sub-layer is captured by a discontinuity at the

wall. This results in accurate mean and rms results without the need to resolve the

viscous sublayer.

Figure 2 shows that mean and rms profiles for `VMS at Reτ = 395 are also in

good agreement with DNS. We emphasize that these results were obtained without

tuning of any parameters. All that is required is to use the same relative resolution

(see Table 1). We conclude by presenting streamwise and spanwise velocity spectra

taken at y+ = 20 (Fig. 3) for Reτ = 395 which show remarkably good agreement

with DNS in the large-scales. Similar to prior VMS computations using global

spectral-methods [17], energy in the small-scales is noticeably less than that of

DNS. In VMS methods, the small-scales play the role of a buffer that protect the

large-scales from modeling and truncation errors. This indeed appears to be the case

in the current `VMS simulations which, with an appropriately selected large-scale

space and sufficiently large small-scale space (see Ref. [17]), result in excellent

mean, rms, and large-scale spectra.
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4 Conclusions

As a first-step toward `VMS simulations of turbulent flows, this paper presents

`VMS results for planar channel flows that demonstrate excellent mean and second-

order statistics. These results are obtained using a constant coefficient Smagorin-

sky model applied only to small-scales where the small-scales are defined local to

each element. Similar to our experiences with global spectral methods and VMS,

the main requirements are that the large-scale space be sufficient to represent the

dynamically important scales, while the small-scale space is sufficiently large to

provide an adequate buffer to protect the large-scales. The reader is referred to

[15, 17] for additional details. Specific to `VMS, we find that the weak imposition

of wall-boundary conditions prevents the need to resolve the viscous sublayer both

for DNS (as shown in Ref. [16]) and in `VMS. These initial results provide guid-

ance for the use of `VMS for more complex turbulent flows, and this is the direction

of our future research.
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Table 1. Run parameters for `VMS simulations.

Reτ Lx, Ly, Lz Nx × Ny × Nz p cs ∆y+
w ∆x+ ∆z+ d.o.f.

100 4π, 2, 4π/3 4 × 4 × 4 5 7/4 2.2 314 105 13,824

100 4π, 2, 4π/3 4 × 4 × 4 5 uniform 4.3 314 105 13,824

395 π, 2, π/2 4 × 6 × 9 5 7/4 2.3 310 103 46,656
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Fig. 1. Mean and rms velocity profiles for Reτ = 100 on 4 × 4 × 4 mesh using p = 5:

incompressible DNS; `VMS with uniform wall-normal mesh; `VMS

with stretched wall-normal mesh.
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Fig. 2. Mean and rms velocity profiles for Reτ = 395 on 4×6×9 mesh using p = 5:

incompressible DNS [13]; `VMS
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Fig. 3. Streamwise and spanwise velocity spectra for Reτ = 395 on 4 × 6 × 9 mesh using

p = 5: incompressible DNS [13]; `VMS
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